3/29/2022

How To Convert Betting Odds To Percentages

13
How To Convert Betting Odds To Percentages 3,7/5 4369 reviews
  1. Betting Odds Presidential Election
  2. Betting Odds Explained
How To Convert Betting Odds To Percentages

Odds are most commonly expressed as ratios, but converting them to percentages often make them easier to work with. The ratio has two numbers: the size of the pot and the cost of the call. To convert this ratio to the equivalent percentage, these two numbers are added together and the cost of the call is divided by this sum. Betting Odds & Chance. To first understand what betting odds are, we have to first understand the concept of chance. Chance is the likelihood of an event happening. It is often expressed in percentages, also referred to as the probability. Let's roll a dice. Rolling a dice yields a probability of 1 out of 6 for each outcome.

  1. Calculate bet returns for Accumulators, Lucky 15's, Doubles, Trebles, Football, Horse Racing and more. The most comprehensive and reliable bet calculator.
  2. American Odds are the default odds at American sportsbooks. These odds are based on winning $100 for a given bet. Betting a Favorite: The odds for favorites will have a minus (-) sign, and represent the money you need to risk to win $100. So if you're betting on the Packers at -140 against the Vikings, that means Green Bay is a slight favorite.
  3. For sports fans that want to convert various odds across online sports betting sites or exchanges manually, whether it's American football or tennis, these are the basic formulas: Convert Fractional Odds & Decimal Odds. You can convert fractional odds into decimal odds by dividing the numerator by the denominator, and then adding 1.

In poker, pot odds are the ratio of the current size of the pot to the cost of a contemplated call.[1] Pot odds are often compared to the probability of winning a hand with a future card in order to estimate the call's expected value.

Converting odds ratios to and from percentages[edit]

Odds are most commonly expressed as ratios, but converting them to percentages often make them easier to work with. The ratio has two numbers: the size of the pot and the cost of the call. To convert this ratio to the equivalent percentage, these two numbers are added together and the cost of the call is divided by this sum. For example, the pot is $30, and the cost of the call is $10. The pot odds in this situation are 30:10, or 3:1 when simplified. To get the percentage, 30 and 10 are added to get a sum of 40 and then 10 is divided by 40, giving 0.25, or 25%.

To convert any percentage or fraction to the equivalent odds, the numerator is subtracted from the denominator and then this difference is divided by the numerator. For example, to convert 25%, or 1/4, 1 is subtracted from 4 to get 3 (or 25 from 100 to get 75) and then 3 is divided by 1 (or 75 by 25), giving 3, or 3:1.


Using pot odds to determine expected value[edit]

When a player holds a drawing hand (a hand that is behind now but is likely to win if a certain card is drawn) pot odds are used to determine the expected value of that hand when the player is faced with a bet.

The expected value of a call is determined by comparing the pot odds to the odds of drawing a card that wins the pot. When the odds of drawing a card that wins the pot are numerically higher than the pot odds, the call has a positive expectation; on average, a portion of the pot that is greater than the cost of the call is won. Conversely, if the odds of drawing a winning card are numerically lower than the pot odds, the call has a negative expectation, and the expectation is to win less money on average than it costs to call the bet.

Implied pot odds[edit]

Implied pot odds, or simply implied odds, are calculated the same way as pot odds, but take into consideration estimated future betting. Implied odds are calculated in situations where the player expects to fold in the following round if the draw is missed, thereby losing no additional bets, but expects to gain additional bets when the draw is made. Since the player expects to always gain additional bets in later rounds when the draw is made, and never lose any additional bets when the draw is missed, the extra bets that the player expects to gain, excluding his own, can fairly be added to the current size of the pot. This adjusted pot value is known as the implied pot.

Example (Texas hold'em)[edit]

On the turn, Alice's hand is certainly behind, and she faces a $1 call to win a $10 pot against a single opponent. There are four cards remaining in the deck that make her hand a certain winner. Her probability of drawing one of those cards is therefore 4/47 (8.5%), which when converted to odds is 10.75:1. Since the pot lays 10:1 (9.1%), Alice will on average lose money by calling if there is no future betting. However, Alice expects her opponent to call her additional $1 bet on the final betting round if she makes her draw. Alice will fold if she misses her draw and thus lose no additional bets. Alice's implied pot is therefore $11 ($10 plus the expected $1 call to her additional $1 bet), so her implied pot odds are 11:1 (8.3%). Her call now has a positive expectation.

Reverse implied pot odds[edit]

Reverse implied pot odds, or simply reverse implied odds, apply to situations where a player will win the minimum if holding the best hand but lose the maximum if not having the best hand. Aggressive actions (bets and raises) are subject to reverse implied odds, because they win the minimum if they win immediately (the current pot), but may lose the maximum if called (the current pot plus the called bet or raise). These situations may also occur when a player has a made hand with little chance of improving what is believed to be currently the best hand, but an opponent continues to bet. An opponent with a weak hand will be likely to give up after the player calls and not call any bets the player makes. An opponent with a superior hand, will, on the other hand, continue, (extracting additional bets or calls from the player).

Limit Texas hold'em example[edit]

With one card to come, Alice holds a made hand with little chance of improving and faces a $10 call to win a $30 pot. If her opponent has a weak hand or is bluffing, Alice expects no further bets or calls from her opponent. If her opponent has a superior hand, Alice expects the opponent to bet another $10 on the end. Therefore, if Alice wins, she only expects to win the $30 currently in the pot, but if she loses, she expects to lose $20 ($10 call on the turn plus $10 call on the river). Because she is risking $20 to win $30, Alice's reverse implied pot odds are 1.5-to-1 ($30/$20) or 40 percent (1/(1.5+1)). For calling to have a positive expectation, Alice must believe the probability of her opponent having a weak hand is over 40 percent.

Manipulating pot odds[edit]

Often a player will bet to manipulate the pot odds offered to other players. A common example of manipulating pot odds is to make a bet to protect a made hand that discourages opponents from chasing a drawing hand.

No-limit Texas hold 'em example[edit]

With one card to come, Bob has a made hand, but the board shows a potential flush draw. Bob wants to bet enough to make it wrong for an opponent with a flush draw to call, but Bob does not want to bet more than he has to in the event the opponent already has him beat.

Assuming a $20 pot and one opponent, if Bob bets $10 (half the pot), when his opponent acts, the pot will be $30 and it will cost $10 to call. The opponent's pot odds will be 3-to-1, or 25 percent. If the opponent is on a flush draw (9/46, approximately 19.565 percent or 4.11-to-1 odds against with one card to come), the pot is not offering adequate pot odds for the opponent to call unless the opponent thinks they can induce additional final round betting from Bob if the opponent completes their flush draw (see implied pot odds).

A bet of $6.43, resulting in pot odds of 4.11-to-1, would make his opponent mathematically indifferent to calling if implied odds are disregarded.

Bluffing frequency[edit]

According to David Sklansky, game theory shows that a player should bluff a percentage of the time equal to his opponent's pot odds to call the bluff. For example, in the final betting round, if the pot is $30 and a player is contemplating a $30 bet (which will give his opponent 2-to-1 pot odds for the call), the player should bluff half as often as he would bet for value (one out of three times).

Slanksy notes that this conclusion does not take into account some of the context of specific situations. A player's bluffing frequency often accounts for many different factors, particularly the tightness or looseness of their opponents. Bluffing against a tight player is more likely to induce a fold than bluffing against a loose player, who is more likely to call the bluff. His strategy is an equilibrium strategy in the sense that it is optimal against someone playing an optimal strategy against it, though no lesser strategy can beat it (another strategy may beat the lesser strategy by more).

See also[edit]

Notes[edit]

References[edit]

  • David Sklansky (1987). The Theory of Poker. Two Plus Two Publications. ISBN1-880685-00-0.
  • David Sklansky (2001). Tournament Poker for Advanced Players. Two Plus Two Publications. ISBN1-880685-28-0.
  • David Sklansky and Mason Malmuth (1988). Hold 'em Poker for Advanced Players. Two Plus Two Publications. ISBN1-880685-22-1.
  • Dan Harrington and Bill Robertie (2004). Harrington on Hold'em: Expert Strategy For No-Limit Tournaments; Volume I: Strategic Play. Two Plus Two Publications. ISBN1-880685-33-7.
  • Dan Harrington and Bill Robertie (2005). Harrington on Hold'em: Expert Strategy For No-Limit Tournaments; Volume II: The Endgame. Two Plus Two Publications. ISBN1-880685-35-3.
  • David Sklansky and Ed Miller (2006). No Limit Hold 'Em Theory and Practice. Two Plus Two Publications. ISBN1-880685-37-X.
Retrieved from 'https://en.wikipedia.org/w/index.php?title=Pot_odds&oldid=992078506'

One of the most interesting aspects of blackjack is the
probability math involved. It’s more complicated than other
games. In fact, it’s easier for computer programs to calculate
blackjack probability by running billions of simulated hands
than it is to calculate the massive number of possible outcomes.

This page takes a look at how blackjack probability works. It
also includes sections on the odds in various blackjack
situations you might encounter.

An Introduction to Probability

Probability is the branch of mathematics that deals with the
likelihood of events. When a meteorologist estimates a 50%
chance of rain on Tuesday, there’s more than meteorology at
work. There’s also math.

Probability is also the branch of math that governs gambling.
After all, what is gambling besides placing bets on various
events? When you can analyze the payoff of the bet in relation
to the odds of winning, you can determine whether or not a bet
is a long term winner or loser.

The Probability Formula

The basic formula for probability is simple. You divide the
number of ways something can happen by the total possible number
of events.

Here are three examples.

Example 1:

Betting Odds Presidential Election

You want to determine the probability of getting heads when
you flip a coin. You only have one way of getting heads, but
there are two possible outcomes—heads or tails. So the
probability of getting heads is 1/2.

Example 2:

You want to determine the probability of rolling a 6 on a
standard die. You have one possible way of rolling a six, but
there are six possible results. Your probability of rolling a
six is 1/6.

Example 3:

You want to determine the probability of drawing the ace of
spades out of a deck of cards. There’s only one ace of spades in
a deck of cards, but there are 52 cards total. Your probability
of drawing the ace of spades is 1/52.

A probability is always a number between 0 and 1. An event
with a probability of 0 will never happen. An event with a
probability of 1 will always happen.

Here are three more examples.

Example 4:Betting

You want to know the probability of rolling a seven on a
single die. There is no seven, so there are zero ways for this
to happen out of six possible results. 0/6 = 0.

Example 5:

You want to know the probability of drawing a joker out of a
deck of cards with no joker in it. There are zero jokers and 52
possible cards to draw. 0/52 = 0.

Example 6:

You have a two headed coin. Your probability of getting heads
is 100%. You have two possible outcomes, and both of them are
heads, which is 2/2 = 1.

A fraction is just one way of expressing a probability,
though. You can also express fractions as a decimal or a
percentage. So 1/2 is the same as 0.5 and 50%.

You probably remember how to convert a fraction into a
decimal or a percentage from junior high school math, though.

Expressing a Probability in Odds Format

The more interesting and useful way to express probability is
in odds format. When you’re expressing a probability as odds,
you compare the number of ways it can’t happen with the number
of ways it can happen.

Here are a couple of examples of this.

Example 1:

You want to express your chances of rolling a six on a six
sided die in odds format. There are five ways to get something
other than a six, and only one way to get a six, so the odds are
5 to 1.

Example 2:

You want to express the odds of drawing an ace of spades out
a deck of cards. 51 of those cards are something else, but one
of those cards is the ace, so the odds are 51 to 1.

Odds become useful when you compare them with payouts on
bets. True odds are when a bet pays off at the same rate as its
probability.

Here’s an example of true odds:

You and your buddy are playing a simple gambling game you
made up. He bets a dollar on every roll of a single die, and he
gets to guess a number. If he’s right, you pay him $5. If he’s
wrong, he pays you $1.

Since the odds of him winning are 5 to 1, and the payoff is
also 5 to 1, you’re playing a game with true odds. In the long
run, you’ll both break even. In the short run, of course,
anything can happen.

Probability and Expected Value

One of the truisms about probability is that the greater the
number of trials, the closer you’ll get to the expected results.

If you changed the equation slightly, you could play this
game at a profit. Suppose you only paid him $4 every time he
won. You’d have him at an advantage, wouldn’t you?

  • He’d win an average of $4 once every six rolls
  • But he’d lose an average of $5 on every six rolls
  • This gives him a net loss of $1 for every six rolls.

You can reduce that to how much he expects to lose on every
single roll by dividing $1 by 6. You’ll get 16.67 cents.

On the other hand, if you paid him $7 every time he won, he’d
have an advantage over you. He’d still lose more often than he’d
win. But his winnings would be large enough to compensate for
those 5 losses and then some.

The difference between the payout odds on a bet and the true
odds is where every casino in the world makes its money. The
only bet in the casino which offers a true odds payout is the
odds bet in craps, and you have to make a bet at a disadvantage
before you can place that bet.

Here’s an actual example of how odds work in a casino. A
roulette wheel has 38 numbers on it. Your odds of picking the
correct number are therefore 37 to 1. A bet on a single number
in roulette only pays off at 35 to 1.

You can also look at the odds of multiple events occurring.
The operative words in these situations are “and” and “or”.

  • If you want to know the probability of A happening AND
    of B happening, you multiply the probabilities.
  • If you want to know the probability of A happening OR of
    B happening, you add the probabilities together.

Here are some examples of how that works.

Example 1:Betting

You want to know the probability that you’ll draw an ace of
spades AND then draw the jack of spades. The probability of
drawing the ace of spades is 1/52. The probability of then
drawing the jack of spades is 1/51. (That’s not a typo—you
already drew the ace of spades, so you only have 51 cards left
in the deck.)

The probability of drawing those 2 cards in that order is
1/52 X 1/51, or 1/2652.

Example 2:

You want to know the probability that you’ll get a blackjack.
That’s easily calculated, but it varies based on how many decks
are being used. For this example, we’ll use one deck.

To get a blackjack, you need either an ace-ten combination,
or a ten-ace combination. Order doesn’t matter, because either
will have the same chance of happening.

Your probability of getting an ace on your first card is
4/52. You have four aces in the deck, and you have 52 total
cards. That reduces down to 1/13.

Your probability of getting a ten on your second card is
16/51. There are 16 cards in the deck with a value of ten; four
each of a jack, queen, king, and ten.

So your probability of being dealt an ace and then a 10 is
1/13 X 16/51, or 16/663.

The probability of being dealt a 10 and then an ace is also
16/663.

You want to know if one or the other is going to happen, so
you add the two probabilities together.

16/663 + 16/663 = 32/663.

That translates to approximately 0.0483, or 4.83%. That’s
about 5%, which is about 1 in 20.

Example 3:

You’re playing in a single deck blackjack game, and you’ve
seen 4 hands against the dealer. In all 4 of those hands, no ace
or 10 has appeared. You’ve seen a total of 24 cards.

What is your probability of getting a blackjack now?

Your probability of getting an ace is now 4/28, or 1/7.
(There are only 28 cards left in the deck.)

Your probability of getting a 10 is now 16/27.

Your probability of getting an ace and then a 10 is 1/7 X
16/27, or 16/189.

Again, you could get a blackjack by getting an ace and a ten
or by getting a ten and then an ace, so you add the two
probabilities together.

16/189 + 16/189 = 32/189

Your chance of getting a blackjack is now 16.9%.

This last example demonstrates why counting cards works. The
deck has a memory of sorts. If you track the ratio of aces and
tens to the low cards in the deck, you can tell when you’re more
likely to be dealt a blackjack.

Since that hand pays out at 3 to 2 instead of even money,
you’ll raise your bet in these situations.

The House Edge

The house edge is a related concept. It’s a calculation of
your expected value in relation to the amount of your bet.

Here’s an example.

If the expected value of a $100 bet is $95, the house edge is
5%.

Expected value is just the average amount of money you’ll win
or lose on a bet over a huge number of trials.

Using a simple example from earlier, let’s suppose you are a
12 year old entrepreneur, and you open a small casino on the
street corner. You allow your customers to roll a six sided die
and guess which result they’ll get. They have to bet a dollar,
and they get a $4 win if they’re right with their guess.

Over every six trials, the probability is that you’ll win
five bets and lose one bet. You win $5 and lose $4 for a net win
of $1 for every 6 bets.

$1 divided by six bets is 16.67 cents.
Your house edge is 16.67% for this game.

The expected value of that $1 bet, for the customer, is about
84 cents. The expected value of each of those bets–for you–is
$1.16.

That’s how the casino does the math on all its casino games,
and the casino makes sure that the house edge is always in their
favor.

With blackjack, calculating this house edge is harder. After
all, you have to keep up with the expected value for every
situation and then add those together. Luckily, this is easy
enough to do with a computer. We’d hate to have to work it out
with a pencil and paper, though.

What does the house edge for blackjack amount to, then?

It depends on the game and the rules variations in place. It
also depends on the quality of your decisions. If you play
perfectly in every situation—making the move with the highest
possible expected value—then the house edge is usually between
0.5% and 1%.

Presidential

If you just guess at what the correct play is in every
situation, you can add between 2% and 4% to that number. Even
for the gambler who ignores basic strategy, blackjack is one of
the best games in the casino.

Expected Hourly Loss and/or Win

You can use this information to estimate how much money
you’re liable to lose or win per hour in the casino. Of course,
this expected hourly win or loss rate is an average over a long
period of time. Over any small number of sessions, your results
will vary wildly from the expectation.

Betting Odds Explained

Here’s an example of how that calculation works.

  • You are a perfect basic strategy player in a game with a
    0.5% house edge.
  • You’re playing for $100 per hand, and you’re averaging
    50 hands per hour.
  • You’re putting $5,000 into action each hour ($100 x 50).
  • 0.5% of $5,000 is $25.
  • You’re expected (mathematically) to lose $25 per hour.

Here’s another example that assumes you’re a skilled card
counter.

  • You’re able to count cards well enough to get a 1% edge
    over the casino.
  • You’re playing the same 50 hands per hour at $100 per
    hand.
  • Again, you’re putting $5,000 into action each hour ($100
    x $50).
  • 1% of $5,000 is $50.
  • Now, instead of losing $25/hour, you’re winning $50 per
    hour.

Effects of Different Rules on the House Edge

The conditions under which you play blackjack affect the
house edge. For example, the more decks in play, the higher the
house edge. If the dealer hits a soft 17 instead of standing,
the house edge goes up. Getting paid 6 to 5 instead of 3 to 2
for a blackjack also increases the house edge.

Luckily, we know the effect each of these changes has on the
house edge. Using this information, we can make educated
decisions about which games to play and which games to avoid.

Here’s a table with some of the effects of various rule
conditions.

Rules VariationEffect on House Edge
6 to 5 payout on a natural instead of the stand 3 to 2 payout+1.3%
Not having the option to surrender+0.08%
8 decks instead of 1 deck+0.61%
Dealer hits a soft 17 instead of standing+0.21%
Player is not allowed to double after splitting+0.14%
Player is only allowed to double with a total of 10 or 11+0.18%
Player isn’t allowed to re-split aces+0.07%
Player isn’t allow to hit split aces+0.18%

These are just some examples. There are multiple rules
variations you can find, some of which are so dramatic that the
game gets a different name entirely. Examples include Spanish 21
and Double Exposure.

The composition of the deck affects the house edge, too. We
touched on this earlier when discussing how card counting works.
But we can go into more detail here.

Every card that is removed from the deck moves the house edge
up or down on the subsequent hands. This might not make sense
initially, but think about it. If you removed all the aces from
the deck, it would be impossible to get a 3 to 2 payout on a
blackjack. That would increase the house edge significantly,
wouldn’t it?

Here’s the effect on the house edge when you remove a card of
a certain rank from the deck.

Card RankEffect on House Edge
When Removed
2-0.40%
3-0.43%
4-0.52%
5-0.67%
6-0.45%
7-0.30%
8-0.01%
9+0.15%
10+0.51%
A+0.59%

These percentages are based on a single deck. If you’re
playing in a game with multiple decks, the effect of the removal
of each card is diluted by the number of decks in play.

Looking at these numbers is telling, especially when you
compare these percentages with the values given to the cards
when counting. The low cards (2-6) have the most dramatic effect
on the house edge. That’s why almost all counting systems assign
a value to each of them. The middle cards (7-9) have a much
smaller effect. Then the high cards, aces and tens, also have a
large effect.

The most important cards are the aces and the fives. Each of
those cards is worth over 0.5% to the house edge. That’s why the
simplest card counting system, the ace-five count, only tracks
those two ranks. They’re that powerful.

You can also look at the probability that a dealer will bust
based on her up card. This provides some insight into how basic
strategy decisions work.

Dealer’s Up CardPercentage Chance Dealer Will Bust
235.30%
337.56%
440.28%
542.89%
642.08%
725.99%
823.86%
923.34%
1021.43%
A11.65%

Perceptive readers will notice a big jump in the probability
of a dealer busting between the numbers six and seven. They’ll
also notice a similar division on most basic strategy charts.
Players generally stand more often when the dealer has a six or
lower showing. That’s because the dealer has a significantly
greater chance of going bust.

Summary and Further Reading

Odds and probability in blackjack is a subject with endless
ramifications. The most important concepts to understand are how
to calculate probability, how to understand expected value, and
how to quantify the house edge. Understanding the underlying
probabilities in the game makes learning basic strategy and card
counting techniques easier.